
Landau theory of 2nd order phase transitions

Phase transitions	
1 order	II order
hatent heat absorbed / released	$S_1 = S_2$ $\frac{\partial F}{\partial T}$ continuous
$Q = T(S_2 - S_1) = -T \frac{\partial F}{\partial T} \Big _1^2$ (Gas-liquid)	(32F discontinuous) Superconductive to it paramagnet
(Graf-liquid) Superconductive transition, paramagnet - terromagnet // Sometimes people talk about intinite - order phase transitions	
Focus on 2 rd order phase transitions Occur without a rapid transformation of the phase -> A continuous phase transition	
M ≠ 0 Ferromagnet	M = 0 Paramagnet
// Jossume a given volume and temperature $ \Box + TM + AM^2 + CM^3 + BM^4 + $	

 $F = F_0 + IM + AM^2 + CM^3 + BM^4 + ...$ near the transition point. One should have L = 0. (also by symmetry) Geff. A = A(V, T) depends on the volume and the temperature. Otherwise there will always be a local maximum across the transition F = Fo + AM2 It the transition it changes $A = a(T - T_c)$ F = F_o + a (T-T_c) M² + BM

Consider the ,, ordered " phase with M=0 It corresponds to $T < T_c$

 $2BM^{2}-a(T_{c}-T)=0$

 $\rightarrow M = \pm \left(\frac{a(T_c - T)}{2B}\right)^{\frac{7}{2}}$

Note: the magnetisation spontaneously breaks symmetry

Instead of the tree energy one would use the thermodynamic potential $\varphi(P,T)$ if the the thermodynamic potential pressure P and T. system was under constant pressure P and T.

The entropy

$$S = -\frac{\partial F}{\partial T} = S_o - \alpha M^2 - \alpha (T - T_c) \frac{\partial M^2}{\partial T}$$

Use $M^2 = \frac{a(T_c-T)}{2B}$ below the transition

$$S = \begin{cases} S_o, T > T_c \\ S_c + \frac{a^2(T - T_c)}{B}, T < T_c \end{cases}$$

Meat capacity: (near the transition)

$$C = \begin{cases} C_o, & T > T_c \\ C_o + \frac{\alpha^2 T_c}{2B}, & T < T_c \end{cases}$$

What: $\frac{\partial^2 F}{\partial T^2}$ is discontinuous

$$C_P, C_V \text{ and a lot of other quantities}$$

are discontinuous

Let's apply some external field H

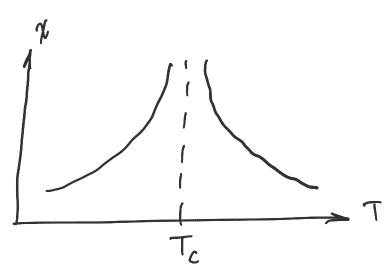
$$F = F_o + a(T - T_c) M^2 + B M^4 - H M$$

Note: an arbitrarily small field H will

Note: an arbitrarily small field H will lead to a finite magnetisation M Minimisation: 2a M(T-Tc)+4BM3-H=0

In the limit $H \rightarrow 0$ in the disordered phase neglect the $\propto M^3$ term

2a M(T-Tc)-H=0


$$\chi = \frac{M}{H} = \frac{1}{2\alpha(T-T_c)}$$

Below the transition

Below the transition
$$\frac{dM}{dH} \left[2a(T-T_c) + 6B \frac{a(T_c-T)}{2B} \right] = 1$$

$$\frac{dM}{dH} \cdot a(T_c - T) = /$$

$$\chi = \frac{dM}{dH} = \frac{1}{a(T_c - T)}$$

